Reimagining Pain Management with AI: Opportunities and Risks of Large Language Models

Prof. Anand Rao

Distinguished Service Professor of Applied Analytics and AI Heinz College of Information Systems and Public Policy Carnegie Mellon University

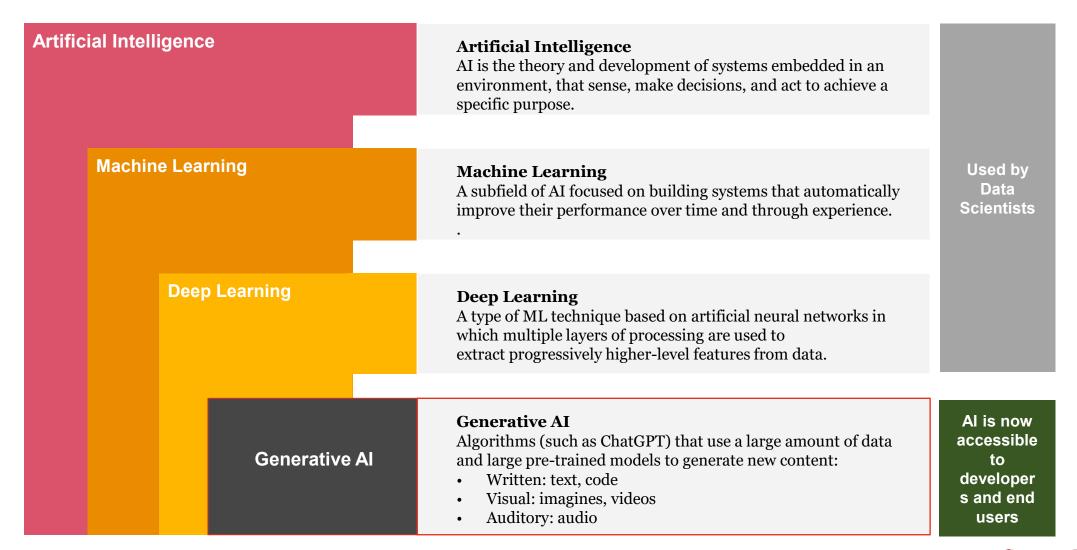
Em ail: anandr2@andrew.cmu.edu

LinkedIn: https://www.linkedin.com/in/anandsrao/

Agenda

- From AI to Generative AI to Agents
- Why now & where LLMs help
- Evidence from pain & periop
- Safety playbook: evaluate + guardrails
- What's next & how to start

From AI to Generative AI

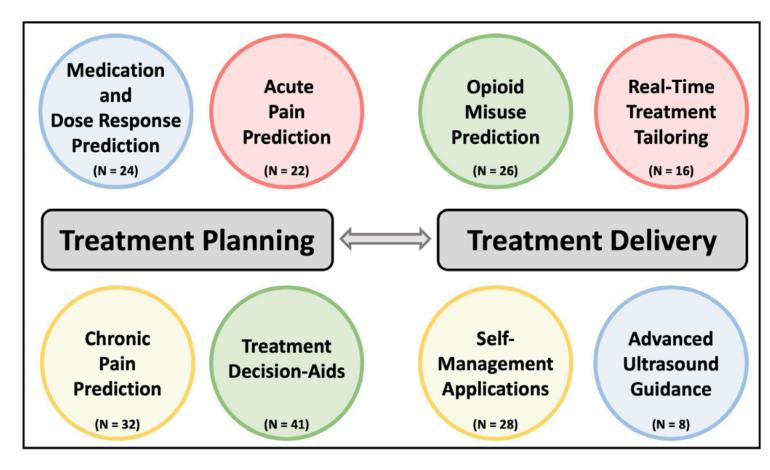


Why Now: Pain, Workflows, Readiness



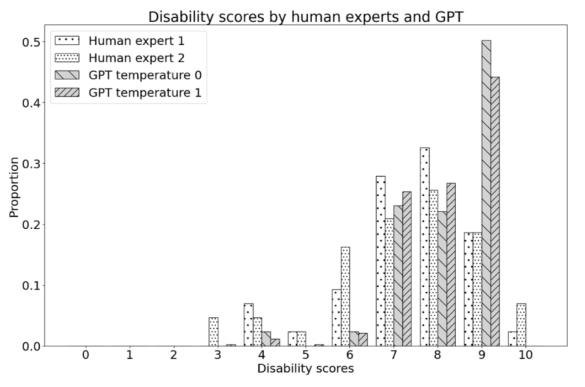
- Documentation burden; narrative signal unlocked — Pain histories are long and fragmented; LLM summaries reclaim time and surface key descriptors while preserving clinician judgment, empathy, and procedural focus.
- Intake to structured, searchable summary Convert free-text narratives into timelines, medication lists, coded problems, and red-flag citations, enabling faster retrieval and consistent documentation across rotating teams.
- Surface safety and workflow flags early Automatically highlight anticoagulation, chronic steroid use, infection risk, sleep-apnea concerns, and prior complications to streamline pre-procedure planning and consent discussions.
- Augmentation with protocols and oversight Position LLMs as co-pilots grounded in local guidelines, with human review and audit trails—never autonomous orders or unsupervised patient messaging.

AI in Pain Medicine: Planning to Precision Delivery



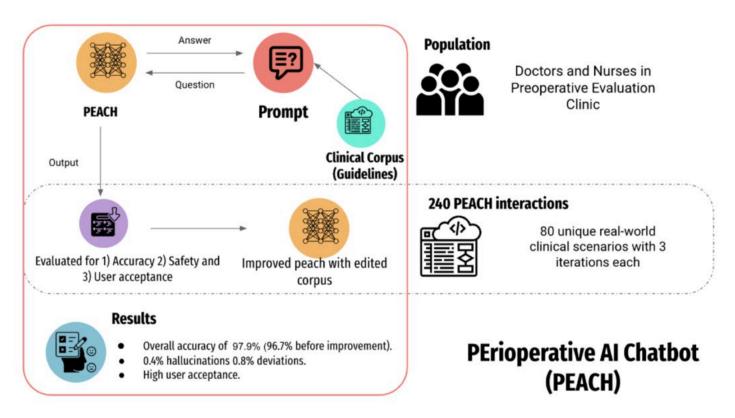
- AI supports both upstream planning (e.g. predicting pain or misuse) and downstream delivery (e.g. real-time tailoring)
- Most common use: AI-based decision aids (n = 41) and chronic pain prediction (n = 32)
- Emphasis on personalization and reducing opioid reliance

Do LLMs Match Experts? (Pain Narratives)



- Feasibility with small sample 43 fibromyalgia narratives (Spanish); GPT-4 scored severity/disability against two experts using predefined prompts and outputs.
- High weighted agreement values —
 Weighted agreement ≈ 0.94-0.95; Gwet AC2
 ≈0.79-0.84; Krippendorff's α 0.45-0.57 vs
 experts (below inter-expert α).
- Errors small and significant RMSE ≈1.20 (severity) and 1.44 (disability); significantly lower than naïve baseline (P<.001/.01), indicating non-trivial predictive value.
- Slight, consistent overestimation Mean overestimation o.66-o.83 (severity) and o.25-o.37 (disability); treat as method signal, not practice-changing evidence.

Perioperative Co-Pilot: Workflow + Evidence



Accuracy 97.9% | Hallucination 0.4% | Deviation 0.8% | 10–15 s | 95% CI 0.952–0.991 | p=0.018.

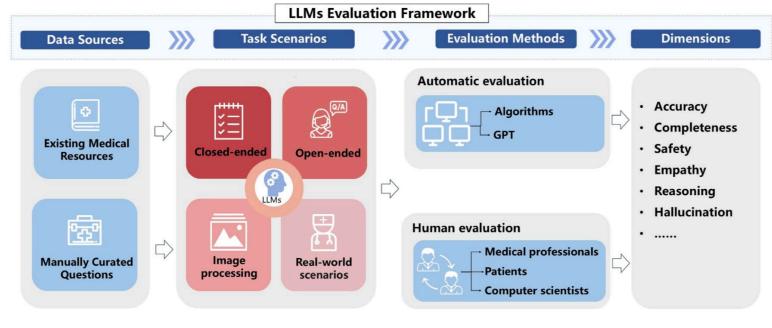
- **Protocol-grounded, human-in- the-loop** Clinicians finalize decisions first; chatbot answers are constrained to local guidelines with inline sources inside a secure enclave.
- Strong accuracy and safety profile After a minor protocol fix, observed accuracy 97.9% with 0.4% hallucinations, 0.8% deviations, and typical 10–15-second response time.
- Robust human comparison Planned n≥73; executed 80 questions/240 iterations; agreement with attendings ~91%; accuracy tested above a 95% null (p=0.018).
- What to copy Monday Ground in your protocols, log everything, require sign-off, and grade outputs weekly for accuracy, deviations, and hallucinations.

 Carnegie Mellon University

Heinz College
INFORMATION SYSTEMS - PUBLIC POLICY - MANAGEMENT

Source: Ke, Yu He, et al. "Real-world Deployment and Evaluation of PErioperative AI CHatbot (PEACH)." arXiv preprint, 2024

How we evaluate LLMs in Clinic



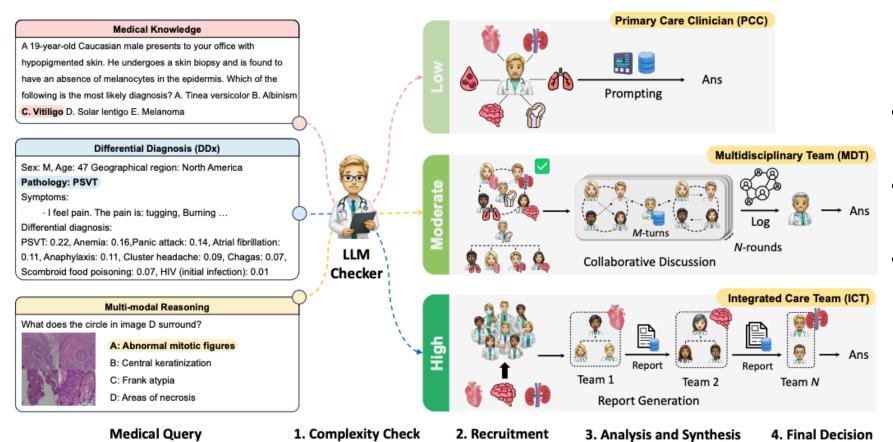
- **Beyond raw accuracy metrics:** Include completeness
 of key facts, and readability of
 outputs at patient-appropriate
 grade levels for safe
 communication.
- Safety and harmful content: Track hallucinations, dangerous recommendations, and inconsistent reasoning with standardized grading rubrics and reviewer consensus.
- Stability and empathy measures: Assess test-retest variability under identical inputs and clinician-rated empathy of patient-facing drafts.

Risks & Guardrails that work

- Grounding beats hallucinations —
 Constrain answers to local guidelines with inline citations; allow "no-answer"; require clinician sign-off; grade accuracy/safety weekly.
- **Protect privacy and legality** Keep PHI in a secure enclave; role-based access and audit logs; retention limits; IRB/consent for any patient-facing output.
- Measure and mitigate bias Track subgroup errors and chance-corrected agreement; calibrate thresholds; redact sensitive attributes; run periodic blinded chart reviews for drift.
- Temperature = 0 and version-locked prompts/models; retrieval as the source of truth; prefer smaller models; cache responses to cut cost/footprint.
- **Phase-in path:** synthetic testbeds → silent deployment → measured roll-out.

Source: Hondjeu, A. R. M., et al. "Large Language Models in Perioperative Medicine: Opportunities and Challenges." Can J Anesth, 2025.

When a Single Co-Pilot Isn't Enough: Agent Teams



- Triage by complexity

 → right team
- Protocol-first, toolssecond
- Standardizes
 complex care while
 keeping a human
 final decision.

Source: Kim, Yubin, et al. "MDAgents: An adaptive collaboration of LLMs for medical decision-making." Advances in Neural Information Processing Systems 37 (2024): 79410-79452.

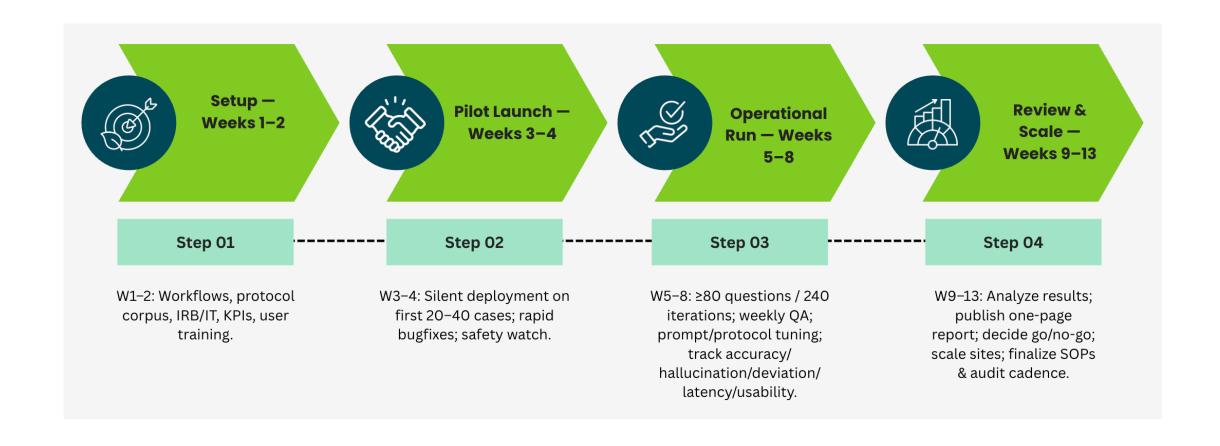
Safer, Faster Testing: Synthetic Patients & Episodes

SleepAgents: Multi-Agent Simulation of Sleep Disorders

Web Agent Search **Analysis** Persona **Episode** Creation **Development Design** 9 trusted **Patient** 224 unique Disease sources journey Multi-turn specific models (PubMed. combinations mapping Conversations NIH, AASM) Persona Generator Framework Disorder Causes Sleep Disorder Types **Treatment Types**

- Train and test with no PHI Build realistic synthetic pain cases using public evidence and expert input; simulate longitudinal patient journeys safely.
- Catch risks before going live Run agents through test cases first to measure hallucinations, deviations, and guideline compliance.
- From sandbox to clinic Use simulation results to tune prompts and agents, then safely graduate to silent deployment—like what was done in PEACH.

90-Day LLM Co-Pilot Roadmap



Key Takeaways

- Ground in your protocols; clinicians sign off. (No autonomous actions.)
- **Measure before and during:** accuracy + completeness; aim hallucination & deviation <1%; readable patient drafts.
- Start small, then scale: 2 workflows 13 weeks share results.

